

A Design Guide for Energy-Efficient Research Laboratories

Presented by: Geoffrey C. Bell, P.E. Lawrence Berkeley National Laboratory

Who is in Attendance?

- → Building Owners
- ◆ University/Government Facility Operators
- → Architects
- → Engineers
- → Designers
- ◆ Energy Managers
- → and ?

Session Goals...

- → Discuss: Energy Design Process
- → Present: Design Guide Tool
- → Overview: Design Guide Chapters
- + Summary

The Energy-Efficient Design Process

- Minimize the Load
- ◆ Determine Potential Load Variability
- Match Variable Load with an Adjustable System
- Use an Integrated Energy Engineering Approach: Right Sizing
- Understand Barriers
- Promote Safety Relationship

Barriers to Energy-Efficiency

- The Guide can help overcome perceived barriers to energy efficiency including:
 - Standard Design Practices
 - **■** First Cost over Life-Cycle Cost
 - Lack of Time: Project <u>Due</u> Yesterday
 - **■** Energy-efficiency features "unproven"
 - Operation and Maintenance Costs not clearly understood
 - Some Codes and Architectural priorities limit design
 - Inadequate space in facility allotted
 - **■** Performance envelope specification may limit options
 - **■** Experienced Designers in short supply

Safety and Energy-Efficient Design

- Insurance Industry lists specific "Named Perils & Events" in laboratory spaces.
- ◆ These perils and events are linked to "Loss Prevention Measures" including:
 - Building Commissioning
 - Demand-Controlled Ventilation
 - ◆ Economizer Cooling
 - Efficient Duct Systems
 - ◆ Efficient Lighting
 - Energy Management and Control Systems
 - Heat Recovery Ventilation
- All "Measures" are covered in the Guide.

Safety and Energy-Efficiency Features

- Additional items in the Guide that specifically relate to safety and energy efficiency include:
 - fume hoods
 - biological safety cabinet selection
 - room pressurization schemes and techniques
 - filtration systems
 - glove boxes
 - variable air volume laboratories
 - laboratory utility locations and access
 - laboratory egress and adjacency
 - exhaust stack design and modeling (effluent dispersion)
 - system redundancy
 - modular plant design
 - right sizing

Session Goals...

- → Discuss: Energy Design Process
- **→Present:** Design Guide Tool
- ◆ Overview: Design Guide Chapters
- + Summary

LBNL Design Guide...

- → focuses <u>comprehensively</u> on energy issues in highly specialized research laboratory and cleanroom environments.
- → addresses many antiquated rules of thumb, which often inadvertently cause energy <u>inefficiency</u>.
- → introduces energy decision-making into the <u>earliest phases</u> of the design process.
- → provides <u>access to literature</u> on pertinent issues.
- → helps designers become aware of <u>debates and issues</u> related to energy efficiency.
- → fills an important void in the general literature and compliments existing in-depth technical manuals.

Design Guide Introduction

◆ Scope

 For multiple audiences: building owners, planners, architects, and engineers, and energy utility personnel.

◆ Purpose

"...to foster energy efficiency in research laboratories."

Application

 Research laboratory-type facilities in universities and in commercial and industrial facilities, that have laboratories and cleanrooms.

◆ How to Use the Guide

- Hierarchical format moving from macro to micro levels.
- Chapters are presented in four increasingly technical levels.

Chapter Levels - First Level

Highest Level

- Provides an executive summary
- Identified with integer, e.g., 6.0 is the Chapter on Exhaust Systems.

Abstract Form

• Presents main energy-efficiency points in chapter.

◆ General Overview of Chapter Topic

Highlights and summarizes chapter's key topics.

Chapter Levels - Second Level

◆ Sub-Topic Level

- Presents significant sub-topics
- Identified with two numbers, e.g., 6.3 is the Section on Variable Volume Hoods.
- ◆ Techniques for Energy Efficient Design
 - Provides more energy-efficiency specifics.
- ◆ For Architects, Planners, and Managers
 - Furnishes decision-makers with key information.

Chapter Levels - Third Level

System/Component Level

- Presents system design and component features.
- Identified with three numbers, e.g., 6.3.2 is the Section on Fume Hood Face Velocity Control.

◆ Energy-Efficient Design and Specification

Provides analyses energy-efficient systems and components.

◆ For Engineers and Designers

Furnishes "nuts and bolts" information.

Chapter Levels - Fourth Level

Background/Case Study Level

- Presents very specific background and support information.
- Identified with four numbers, e.g., 6.3.2.4 is the Section on Fume Hood Face Velocity Response Time.

Case Studies and Examples

Provides information and articles on sizing and installations.

Engineering and Design Basics

Furnishes reader with background literature and information.

How to use the Guide

DESIGN GUIDE PHILO SO PHY AND DECISION - MAKING PROCESS EXAMPLE DESIGN GUIDE PROCESS FLOW CHART ARCHITECTURAL PROGRAMMING -CODE and OCCUPANCY REVIEW DESIGN STANDARDS ___ DESIGN PROGRAM DESIGN FLEXIBILITY RIGHT SIZING DIVERSITY _ LOAD MANAGEMENT HIGHER/ MACRO HVAC SYSTEM SIZE ? -🕨 O PTIMUM MECHANICAL SYSTEM 🔛 ROOM AIR CHANGE RATES 🔝 _____ FUME HOOD FACE VELOCITY, etc LOWER/ MICRO DIRECT DIG ITAL CONTROL SYSTEMS ____ LAYOUT DEPTH The final step in the design of the supply system is the choice of the fan. design condition is required. Included with the normal operating situation are; the part·load, start·up, and full bypass energy loads. For example consider a single-width, single-inlet, air-foil fan at 20,000 C FM @ 2.5" w.g. SIZE (in.) 33 1200 15.6 13.8 36 960 767 12.3 40 653 12 1 44 M in im u m 586 12.6 49 Horsepower

Session Goals...

- → Discuss: Energy Design Process
- → Present: Design Guide Tool
- **+Overview:** Design Guide Chapters
- + Summary

"Hot Topics"

- → Integrated System Design: Right-Sizing for Energy Efficiency
- → Safety & Energy Efficiency Work Together
- → Energy Monitoring and Control System with Direct Digital Control
- → Variable Frequency Drives (VFDs) & Air Flow Rates
- → Modularized Plant Devices
- → Segregating Tasks with Minienvironments
- → Indirect-Direct Evaporative Cooling
- → Other Measures

Design Guide Chapters

- Chapter 2: Architectural Programming
- Chapter 3: Right Sizing:
 - **Choosing an Energy-Efficient Design**
- Chapter 4: Direct Digital Control Systems
- Chapter 5: Supply Systems
- Chapter 6: Exhaust Systems
- Chapter 7: Distribution Systems
- Chapter 8: Filtration Systems
- Chapter 9: Lighting Systems
- Chapter 10: Commissioning

2. Architectural Programming

2. Architectural Programming

- 2.1 Codes Vs. Standards
- 2.2 Design Program and Flexibility
- 2.3 Laboratory Adjacency and Utility Service Spaces
- 2.4 Modular Design and Minienvironments

3. Right Sizing: Choosing an Energy-Efficient Design

3. Right Sizing: Choosing an Energy-Efficient Design

- 3.1 Life-Cycle Cost Analysis
- 3.2 System Sizing
- 3.3. Diversity
- 3.4 Load Management

4. Direct Digital Control (DDC)

4. Direct Digital Control (DDC)

- 4.1 DDC Implementation
- 4.2 Sequence of Operation
- 4.3 Total Laboratory Energy Management (TLEM)

5. Supply Systems

5. Supply Systems

• 5.1. Plant Devices

• 5.2. Air Systems

• 5.3. Air Handling Units

• 5.4. Energy Recovery

6. Exhaust Systems

6. Exhaust Systems

- 6.1. Overview
- 6.2. Exhaust Devices
- 6.3. Variable Volume Hoods
- 6.4. Manifolded Exhaust
- 6.5. Effluent Dispersion
- 6.6. User Interface

7. Distribution Systems

7. Distribution Systems

- 7.1. Air Distribution
- 7.2. Room Pressure Control
- 7.3. Diffusers
- 7.4. Noise Attenuation
- 7.5. Pumping Systems

8. Air Filtration

8. Air Filtration

- 8.1 Degree of Filtration
- 8.2. Filter Pressure Drop
- 8.3. Electronic vs. Media Filtration

9. Lighting

9. Lighting

• 9.1 Lighting Design Considerations

• 9.2 High-Efficiency Lighting Components

• 9.3 Lighting Control

10. Commissioning

10. Commissioning

- 10.1 Introduction to Commissioning
- 10.2 Installation Verification
- 10.3 Operational Assessment
- 10.4 Performance Measurement
- 10.5 Efficiency Assurance

Session Goals...

- ◆ Discuss: Energy Design Process
- Present: Design Guide Tool
- Overview: Design Guide Chapters
- +Summary

Summary...

- → Introduce energy efficiency early into a design process.
- → Incorporate Integrated Energy Engineering, "Right Sizing", techniques.
- → Match Variable Load with an Adjustable System.
- → Understand debates and issues related to energy efficiency.

Where to get more information

- New <u>Tool Kit</u> web site (under construction)
 http://Labs21.lbl.gov/
- Lawrence Berkeley National Laboratory;
 Applications Team web site
 http://ATeam.lbl.gov/
- Lawrence Berkeley National Laboratory;
 Environmental Energy Tech. Div.; web site
 http://eetd.lbl.gov/

A-Team & Guide Web Site

A Design Guide for Energy-Efficient Research Laboratories

Please visit our web site for latest Guide information and download the Windows™ Help file diskettes at http://ateam.lbl.gov/design-guide

